

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

5418175169

CHEMISTRY 9701/33

Paper 3 Advanced Practical Skills 1

February/March 2023

2 hours

You must answer on the question paper.

You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

Session
Laboratory

For Examiner's Use		
1		
2		
3		
Total		

This document has 12 pages. Any blank pages are indicated.

DC (PQ) 305538/3 © UCLES 2023

[Turn over

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Some metal carbonates occur in a basic form which means that the metal hydroxide is also present. The formula of one form of basic zinc carbonate is ZnCO₃•2Zn(OH)₂•xH₂O, where x is an integer.

In this experiment you will carry out a thermal decomposition to find the relative formula mass, M_r , and the value of **x** for a sample of basic zinc carbonate.

FA 1 is basic zinc carbonate, ZnCO₃•2Zn(OH)₂•**x**H₂O.

(a) Method

- Weigh the empty crucible with its lid. Record the mass.
- Transfer all the **FA 1** from the container into the crucible.
- Weigh the crucible, lid and **FA 1**. Record the mass.
- Place the crucible and contents on a pipe-clay triangle.
- Heat the crucible gently, with the lid on, for approximately 1 minute.
- Heat strongly, with the lid off, for a further 4 minutes.
- Replace the lid and leave the crucible to cool for at least 5 minutes.

While the crucible is cooling you may wish to begin work on Question 2 or 3.

- When the crucible is cool, weigh the crucible with its lid and contents. Record the mass.
- Place the crucible and contents on the pipe-clay triangle. Remove the lid.
- Heat the crucible strongly for a further 2 minutes.
- Replace the lid and leave the crucible to cool for at least 5 minutes.
- When the crucible is cool, reweigh the crucible with its lid and contents. Record the mass.
- Calculate and record the mass of FA 1 used.
- Calculate and record the mass of residue obtained.

Results

I II III IV V

[5]

1	(b)	١ ١	Ca	ı	_	l	la	ŧi	_	n	6
ı	(D)	, ,	υċ	11	C	uı	ıa	u	U	П	8

The equation for the thermal decomposition is shown.

$$ZnCO_3 \cdot 2Zn(OH)_2 \cdot \mathbf{x}H_2O(s) \rightarrow 3ZnO(s) + CO_2(g) + (\mathbf{x} + 2)H_2O(g)$$

(i) Calculate the amount, in mol, of zinc oxide, ZnO, formed after heating.

amount of ZnO = mol

Hence, calculate the amount, in mol, of basic zinc carbonate in your sample of FA 1.

amount of $ZnCO_3 \cdot 2Zn(OH)_2 \cdot \mathbf{x}H_2O = \dots$ mol

(ii) Use your answer to (b)(i) and your results in (a) to calculate the relative formula mass, M_r , of basic zinc carbonate, **FA 1**.

$$M_{\rm r}$$
 of ZnCO₃•2Zn(OH)₂•**x**H₂O =[1]

(iii) Use the Periodic Table to calculate the relative formula mass, $M_{\rm r}$, of ${\rm ZnCO_3} \cdot 2{\rm Zn(OH)_2}$.

$$M_{\rm r}$$
 of ${\rm ZnCO_3} \cdot {\rm 2Zn(OH)_2} = \dots$ [1]

(iv) Use your answers to (b)(ii) and (b)(iii) to determine the value of x in $ZnCO_3 \cdot 2Zn(OH)_2 \cdot xH_2O$. Show your working.

[Total: 10]

2 In this experiment you will determine the relative formula mass, M_r , of basic zinc carbonate, $ZnCO_3 \cdot 2Zn(OH)_2 \cdot xH_2O$, by an alternative method.

A known mass of basic zinc carbonate is reacted with a known volume and concentration of hydrochloric acid, HC1. The acid added is in excess. You will titrate portions of the resulting solution with sodium hydroxide, NaOH, of known concentration.

FA 2 has been prepared as follows:

 $3.52\,\mathrm{g}\ \mathrm{of}\ \mathrm{basic}\ \mathrm{zinc}\ \mathrm{carbonate},\ \mathrm{ZnCO_3}\bullet\mathrm{2Zn}(\mathrm{OH})_2\bullet\mathbf{x}\mathrm{H}_2\mathrm{O},\ \mathrm{is}\ \mathrm{reacted}\ \mathrm{with}\ 100\,\mathrm{cm}^3\ \mathrm{of}\ 2.00\,\mathrm{mol}\,\mathrm{dm}^{-3}$ hydrochloric acid, HC*l.* The resulting solution is diluted to 1.00 dm³ with distilled water. **FA 3** is 0.150 mol dm⁻³ sodium hydroxide, NaOH.

FA 4 is bromophenol blue indicator.

(a) Method

- Fill the burette with **FA 3**.
- Pipette 25.0 cm³ of **FA 2** into a conical flask.
- Add several drops of **FA 4** to the conical flask.
- Perform a rough titration and record your burette readings in the space below.

The rough titre iscm	ne rough titre	e is	cm ³
----------------------	----------------	------	-----------------

- Carry out as many titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record, in a suitable form below, all your burette readings and the volume of FA 3 added in each accurate titration.

Ι	
II	
III	
IV	
V	
VI	
VII	

[7]

(b) From your accurate titration results, calculate a suitable mean value to use in your calculations. Show clearly how you obtain the mean value.

25.0 cm³ of **FA 2** required cm³ of **FA 3**. [1]

© UCLES 2023 9701/33/F/M/23

(c)) Cal	CII	lati∩	ne
	, oa	u	ши	

- (i) Give your answers to (c)(ii), (c)(iii), (c)(iv) and (c)(vi) to an appropriate number of significant figures.
- (ii) Calculate the amount, in mol, of sodium hydroxide present in the volume of FA 3 in (b).

(iii) Use your answer to (c)(ii) to calculate the amount, in mol, of hydrochloric acid present in 1.00 dm³ of **FA 2**.

amount of
$$HCl$$
 in 1.00 dm³ of **FA 2** = mol [1]

(iv) Use your answer to (c)(iii) and the information about the preparation of FA 2 to calculate the amount, in mol, of hydrochloric acid that reacted with 3.52 g of basic zinc carbonate.

(v) Using the equation given in question 1(b) as a guide, complete the equation for the reaction of hydrochloric acid with basic zinc carbonate. State symbols are **not** required.

$$ZnCO_3 \cdot 2Zn(OH)_2 \cdot xH_2O + 6HCl \rightarrow \dots + \dots + \dots + \dots$$
 [1]

(vi) Use your answer to (c)(iv) and the equation in (c)(v) to calculate the amount, in mol, of basic zinc carbonate in 3.52 g.

amount of
$$ZnCO_3 \cdot 2Zn(OH)_2 \cdot \mathbf{x}H_2O = \dots$$
 mol

Hence, calculate the relative formula mass, M_r , of basic zinc carbonate.

$$M_{\rm r}$$
 of ZnCO₃•2Zn(OH)₂•xH₂O =

[2]

(d)	the student correctly followed all the instructions in (a) to (c) of this question. The formula mass the student calculated was smaller than the correct value. The student suggests that this may be because the concentration of sodium hydroxide, FA 3 , is greater than 0.150 mol dm ⁻³
	Explain why the student is correct.
	[2
	[Total: 17

BLANK PAGE

Qualitative Analysis

For each test you should record all your observations in the spaces provided.

Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added
- the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.

Where no change is observed you should write 'no change'.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests should be attempted.

3	(a)		5 contains one cation and one anion, both of which are listed in the Qualitative analysis es. FA 5 is insoluble in water.
		tube	nsfer approximately half of the sample of FA 5 into a hard-glass test-tube. Heat the tester gently at first, then more strongly, until no further change occurs. Ford all your observations.
			[2]
	(b)		6 is an aqueous solution containing one cation and one anion. The anion is listed in the alitative analysis notes. FA 6 does not contain sulfur.
		(i)	To a 2cm depth of FA 6 in a test-tube, add a piece of magnesium ribbon. Record all your observations.
			[2]
		(ii)	Write an ionic equation for the reaction between FA 6 and magnesium. Include state

© UCLES 2023 9701/33/F/M/23

symbols.

(c)	(i)		ll spatula measur your observation	re of FA 5 to a 2 cos.	m depth of FA 6 i	n a boiling tube.
		The produc	ct of this test is FA	A 7 . Label the boil	ing tube FA 7 .	
		•••••		•••••		[1]
	(ii)		depth of FA 7 in a your observation	test-tube, add ac s.	ueous ammonia.	
		•••••		•••••		
						[1]
(d)	(i)		•	t in both FA 6 ar F A 6 or FA 7 with		ntity of this anion can be s.
		Select two and FA 7 .	pairs of reagents	which may be us	ed to identify the	anion present in both FA 6
		first pair of	reagents:			
				and		
		second pai	r of reagents:			
				and		
	<i>,</i> ,,,,	=				[2]
	(ii)			sh test using the s in a suitable for		gents you have selected.
						[2]
(e)	Hse	your obser	vations in (a) to	(d) to identify the	ions present in l	رت F A 5 and FA 6 . If you are
(0)			fy an ion write 'ur		ions present in	i A o ana i A o. Il you alc
				cation	anion	
			FA 5			
			FA 6			
						[2]

[Total: 13]

Qualitative analysis notes

1 Reactions of cations

cation	reaction with					
	NaOH(aq)	NH ₃ (aq)				
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess				
ammonium, NH ₄ ⁺ (aq)	no ppt. ammonia produced on warming	_				
barium, Ba ²⁺ (aq)	faint white ppt. is observed unless [Ba ²⁺ (aq)] is very low	no ppt.				
calcium, Ca ²⁺ (aq)	white ppt. unless [Ca ²⁺ (aq)] is very low	no ppt.				
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess				
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution				
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess				
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess				
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess				
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess				
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess				

2 Reactions of anions

anion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, Cl ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives cream/off-white ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I ⁻ (aq)	gives pale yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	${ m NH_3}$ liberated on heating with ${ m OH^-}({ m aq})$ and ${ m A}l$ foil; decolourises acidified aqueous ${ m KMnO_4}$
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids); gives white ppt. with high [Ca ²⁺ (aq)]
sulfite, SO ₃ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids); decolourises acidified aqueous KMnO ₄
thiosulfate, S ₂ O ₃ ²⁻ (aq)	gives off-white/pale yellow ppt. slowly with H ⁺

© UCLES 2023 9701/33/F/M/23

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

4 Tests for elements

element	test and test result						
iodine, I ₂	gives blue-black colour on addition of starch solution						

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$				
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$				
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$				
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$				
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions				
ionic product of water	$K_{\rm W} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 ^{\circ}C))$				
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$				

© UCLES 2023 9701/33/F/M/23

The Periodic Table of Elements

	18	٥.	Φ	helium 4.0	0	Φ	ь с	7.	∞	_	not 6:	9	<i>'</i> -	noto	∞.	4	Φ.	1.3	9	_	radon	8	ō	nosse	1
	_	N	I	heli 4.	-	z	e c	8	_	_	arg	Š		kryp	83	Ġ	× _	xer 13.	80	~	rad	1	0	ogane	
	17				6	ш	fluorine	0.81	17	Cl	chlorine 35.5	35	Ŗ	bromine	79.9	23	Н	iodine 126.9	85	Αţ	astatine -	117	<u>r</u>	tennessine -	
	16				8	0	oxygen	0.01	16	ഗ	sulfur 32.1	34	Se	selenium	79.0	52	<u>e</u>	tellurium 127.6	84	Ъо	molouinm –	116	_	livermorium -	
	15				7	z	nitrogen	14.0	15	₾	phosphorus 31.0	33	As	arsenic	74.9	51	Sb	antimony 121.8	83	<u>B</u>	bismuth 209.0	115	Mc	moscovium	
	41				9	ပ	carbon	12.0	4	:S	silicon 28.1	32	Ge	germanium	72.6	20	Sn	tin 118.7	82	Ър	lead 207.2	114	Εl	flerovium	
	13				5	В	boron	10.8	13	Ν	aluminium 27.0	31	Ga	gallium	69.7	49	In	indium 114.8	81	11	thallium 204.4	113	R	nihonium	
											12	30	Zu	zinc	65.4	48	පි	cadmium 112.4	80	Нg	mercury 200.6	112	ర్	copernicium	_
											7	29	C	copper	63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium -	
dn											10	28	z	nickel	58.7	46	Pd	palladium 106.4	78	귙	platinum 195.1	110	Ds	darmstadtium –	
Group											6	27	රි	cobalt	58.9	45	格	rhodium 102.9	77	'n	iridium 192.2	109	₩	meitnerium -	
		-	I	hydrogen 1.0							∞	26	Fe	iron	55.8	44	Ru	ruthenium 101.1	92	SO	osmium 190.2	108	Hs	hassium	
					,						7	25	M	manganese	54.9	43	ပ	technetium -	75	Re	rhenium 186.2	107	В	bohrium	
						loc		SS			9	24	ပ်	chromium	52.0	42	Mo	molybdenum 95.9	74	≥	tungsten 183.8	106	Sg	seaborgium -	
				Key	atomic number	atomic symbo	name	tive atomic ma			2	23	>	vanadium	6.03	41	g	niobium 92.9	73	Д	tantalum 180.9	105	Вb	dubnium	
					100	ato	-	rela			4	22	F	titanium	47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	꿆	rutherfordium -	
											က	21	Sc	scandium	45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids		
	2				4	Be	beryllium	9.0	12	Mg	magnesium 24.3	20	Ca	calcium	40.1	38	Š	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium	
	_				3	:=	lithium	9.0	7	Na	sodium 23.0	19	メ	potassium	39.1	37	Rb	rubidium 85.5	55	Cs	caesium 132.9	87	ъ	francium	-

۲ _	LU	175.0	103	۲	lawrencium	I
02	Y D ytterbium	173.1	102	Š	nobelium	I
69 F	thulium	168.9	101	Md	mendelevium	ı
89 <u>L</u>	erbium	167.3	100	Fm	fermium	ı
29	D L	164.9	66	Es	einsteinium	ı
99	dysprosium	162.5	86	Ç	californium	ı
99	erbium	158.9	97	益	berkelium	ı
64	gadolinium	157.3	96	S	curium	ı
63	europium	152.0	96	Am	americium	ı
62	Samarium	150.4	94	Pu	plutonium	ı
61	promethium	I	93	ď	neptunium	ı
	NG neodymium		92	\supset	uranium	238.0
59	praseodymium	140.9	91	Ра	protactinium	231.0
	serium Ce		06	ᄕ	thorium	232.0
22	La	138.9	88	Ac	actinium	ı

lanthanoids

actinoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.