Cambridge International AS \& A Level

CANDIDATE NAME

CENTRE

CANDIDATE NUMBER

CHEMISTRY

9701/33
Paper 3 Advanced Practical Skills 1
February/March 2023
2 hours

You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 40 .
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.
- Notes for use in qualitative analysis are provided in the
question paper.

For Examiner's Use	
1	
2	
3	
Total	

This document has 12 pages. Any blank pages are indicated.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.
Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 Some metal carbonates occur in a basic form which means that the metal hydroxide is also present. The formula of one form of basic zinc carbonate is $\mathrm{ZnCO}_{3} \cdot 2 \mathrm{Zn}(\mathrm{OH})_{2} \cdot \mathbf{x H}_{2} \mathrm{O}$, where \mathbf{x} is an integer.

In this experiment you will carry out a thermal decomposition to find the relative formula mass, M_{r}, and the value of \mathbf{x} for a sample of basic zinc carbonate.

FA 1 is basic zinc carbonate, $\mathrm{ZnCO}_{3} \cdot 2 \mathrm{Zn}(\mathrm{OH})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$.

(a) Method

- Weigh the empty crucible with its lid. Record the mass.
- Transfer all the FA 1 from the container into the crucible.
- Weigh the crucible, lid and FA 1. Record the mass.
- Place the crucible and contents on a pipe-clay triangle.
- Heat the crucible gently, with the lid on, for approximately 1 minute.
- Heat strongly, with the lid off, for a further 4 minutes.
- Replace the lid and leave the crucible to cool for at least 5 minutes.

While the crucible is cooling you may wish to begin work on Question 2 or 3.

- When the crucible is cool, weigh the crucible with its lid and contents. Record the mass.
- Place the crucible and contents on the pipe-clay triangle. Remove the lid.
- Heat the crucible strongly for a further 2 minutes.
- Replace the lid and leave the crucible to cool for at least 5 minutes.
- When the crucible is cool, reweigh the crucible with its lid and contents. Record the mass.
- Calculate and record the mass of FA 1 used.
- Calculate and record the mass of residue obtained.

Results

I	
II	
III	
IV	
V	

(b) Calculations

The equation for the thermal decomposition is shown.

$$
\mathrm{ZnCO}_{3} \cdot 2 \mathrm{Zn}(\mathrm{OH})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow 3 \mathrm{ZnO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+(\mathbf{x}+2) \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

(i) Calculate the amount, in mol, of zinc oxide, ZnO , formed after heating.

$$
\text { amount of } \mathrm{ZnO}=\text {............................... mol }
$$

Hence, calculate the amount, in mol, of basic zinc carbonate in your sample of FA 1.
amount of $\mathrm{ZnCO}_{3} \cdot 2 \mathrm{Zn}(\mathrm{OH})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}=$
(ii) Use your answer to (b)(i) and your results in (a) to calculate the relative formula mass, M_{r}, of basic zinc carbonate, FA 1.

$$
\begin{equation*}
M_{r} \text { of } \mathrm{ZnCO}_{3} \cdot 2 \mathrm{Zn}(\mathrm{OH})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}= \tag{1}
\end{equation*}
$$

(iii) Use the Periodic Table to calculate the relative formula mass, M_{r}, of $\mathrm{ZnCO}_{3} \cdot 2 \mathrm{Zn}(\mathrm{OH})_{2}$.

$$
\begin{equation*}
M_{\mathrm{r}} \text { of } \mathrm{ZnCO}_{3} \cdot 2 \mathrm{Zn}(\mathrm{OH})_{2}= \tag{1}
\end{equation*}
$$

(iv) Use your answers to (b)(ii) and (b)(iii) to determine the value of \mathbf{x} in $\mathrm{ZnCO}_{3} \cdot 2 \mathrm{Zn}(\mathrm{OH})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$. Show your working.

$$
\begin{equation*}
x= \tag{2}
\end{equation*}
$$

2 In this experiment you will determine the relative formula mass, M_{r}, of basic zinc carbonate, $\mathrm{ZnCO}_{3} \cdot 2 \mathrm{Zn}(\mathrm{OH})_{2} \cdot \mathbf{x H}_{2} \mathrm{O}$, by an alternative method.

A known mass of basic zinc carbonate is reacted with a known volume and concentration of hydrochloric acid, HCl . The acid added is in excess. You will titrate portions of the resulting solution with sodium hydroxide, NaOH , of known concentration.

FA 2 has been prepared as follows:
3.52 g of basic zinc carbonate, $\mathrm{ZnCO}_{3} \cdot 2 \mathrm{Zn}(\mathrm{OH})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$, is reacted with $100 \mathrm{~cm}^{3}$ of $2.00 \mathrm{moldm}^{-3}$ hydrochloric acid, HCl . The resulting solution is diluted to $1.00 \mathrm{dm}^{3}$ with distilled water.
FA 3 is $0.150 \mathrm{moldm}^{-3}$ sodium hydroxide, NaOH .
FA 4 is bromophenol blue indicator.

(a) Method

- Fill the burette with FA 3.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 2 into a conical flask.
- Add several drops of FA 4 to the conical flask.
- Perform a rough titration and record your burette readings in the space below.
- Carry out as many titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record, in a suitable form below, all your burette readings and the volume of FA 3 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, calculate a suitable mean value to use in your calculations. Show clearly how you obtain the mean value.

(c) Calculations

(i) Give your answers to (c)(ii), (c)(iii), (c)(iv) and (c)(vi) to an appropriate number of significant figures.
(ii) Calculate the amount, in mol, of sodium hydroxide present in the volume of FA 3 in (b).

$$
\text { amount of } \mathrm{NaOH}=
$$

\qquad mol [1]
(iii) Use your answer to (c)(ii) to calculate the amount, in mol, of hydrochloric acid present in $1.00 \mathrm{dm}^{3}$ of FA 2.

$$
\begin{equation*}
\text { amount of } \mathrm{HCl} \text { in } 1.00 \mathrm{dm}^{3} \text { of } \mathrm{FA} 2= \tag{1}
\end{equation*}
$$

(iv) Use your answer to (c)(iii) and the information about the preparation of FA 2 to calculate the amount, in mol, of hydrochloric acid that reacted with 3.52 g of basic zinc carbonate.

$$
\text { amount of } \mathrm{HCl} \text { that reacted = }
$$

\qquad mol [1]
(v) Using the equation given in question 1(b) as a guide, complete the equation for the reaction of hydrochloric acid with basic zinc carbonate. State symbols are not required.
$\mathrm{ZnCO}_{3} \cdot 2 \mathrm{Zn}(\mathrm{OH})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}+6 \mathrm{HCl} \rightarrow$ \qquad $+$ \qquad $+$
(vi) Use your answer to (c)(iv) and the equation in (c)(v) to calculate the amount, in mol, of basic zinc carbonate in 3.52 g .

$$
\text { amount of } \mathrm{ZnCO}_{3} \cdot 2 \mathrm{Zn}(\mathrm{OH})_{2} \cdot \mathbf{x H}_{2} \mathrm{O}=
$$

\qquad mol

Hence, calculate the relative formula mass, M_{r}, of basic zinc carbonate.

$$
\begin{equation*}
M_{\mathrm{r}} \text { of } \mathrm{ZnCO}_{3} \cdot 2 \mathrm{Zn}(\mathrm{OH})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}= \tag{2}
\end{equation*}
$$

\qquad
(d) A student correctly followed all the instructions in (a) to (c) of this question. The formula mass the student calculated was smaller than the correct value. The student suggests that this may be because the concentration of sodium hydroxide, FA 3, is greater than $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$.

Explain why the student is correct.
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

Qualitative Analysis

For each test you should record all your observations in the spaces provided.
Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added
- the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.
Where no change is observed you should write 'no change'.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests should be attempted.

3 (a) FA 5 contains one cation and one anion, both of which are listed in the Qualitative analysis notes. FA 5 is insoluble in water.

Transfer approximately half of the sample of FA 5 into a hard-glass test-tube. Heat the testtube gently at first, then more strongly, until no further change occurs.
Record all your observations.
\qquad
\qquad
\qquad
\qquad
(b) FA 6 is an aqueous solution containing one cation and one anion. The anion is listed in the Qualitative analysis notes. FA 6 does not contain sulfur.
(i) To a 2 cm depth of FA 6 in a test-tube, add a piece of magnesium ribbon.

Record all your observations.
\qquad
\qquad
\qquad
(ii) Write an ionic equation for the reaction between FA 6 and magnesium. Include state symbols.
(c) (i) Add a small spatula measure of FA 5 to a 2 cm depth of FA 6 in a boiling tube. Record all your observations.

The product of this test is FA 7. Label the boiling tube FA 7.
\qquad
\qquad
\qquad
(ii) To a 1 cm depth of FA 7 in a test-tube, add aqueous ammonia.

Record all your observations.
\qquad
\qquad
(d) (i) The same anion is present in both FA 6 and FA 7. The identity of this anion can be confirmed by testing either FA 6 or FA 7 with a pair of reagents.

Select two pairs of reagents which may be used to identify the anion present in both FA 6 and FA 7 .
first pair of reagents:
\qquad and \qquad
second pair of reagents:
\qquad and
(ii) Use FA 6 to carry out each test using the two pairs of reagents you have selected. Record all your observations in a suitable form below.
(e) Use your observations in (a) to (d) to identify the ions present in FA 5 and FA 6. If you are unable to identify an ion write 'unknown'.

	cation	anion
FA 5		
FA 6		

Qualitative analysis notes

1 Reactions of cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH_{4}^{+}(aq)	no ppt. ammonia produced on warming	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is observed unless $\left[\mathrm{Ba}^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. unless $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
chromium(III), $\mathrm{Cr}^{3+}(\mathrm{aq})$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), $\mathrm{Cu}^{2+}(\mathrm{aq})$	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), Fe^{3+} (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), $\mathrm{Mn}^{2+}(\mathrm{aq})$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

anion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream/off-white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives pale yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; decolourises acidified aqueous KMnO_{4}
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids); gives white ppt. with high $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]$
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids); decolourises acidified aqueous KMnO_{4}
thiosulfate, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$	gives off-white/pale yellow ppt. slowly with H^{+}

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

4 Tests for elements

element	test and test result
iodine, I_{2}	gives blue-black colour on addition of starch solution

Important values, constants and standards

molar gas constant	$R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Faraday constant	$F=9.65 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
electronic charge	$e=-1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\mathrm{m}}=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at s.t.p. $(101 \mathrm{kPa}$ and 273 K$)$ $V_{\mathrm{m}}=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at room conditions
ionic product of water	$K_{\mathrm{w}}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}\left(\right.$ at $\left.298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)\right)$
specific heat capacity of water	$c=4.18 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\left(4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}\right)$

The Periodic Table of Elements

	을
®㐫喜管	안
¢ O O	® E
	\％
® ¢ ¢ ¢	${ }^{\text {a }}$
	®
	ェว

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cambridgeinternational．org after the live examination series．

